Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570016

RESUMO

Cartilage damage is difficult to heal and poses a serious problem to human health as it can lead to osteoarthritis. In this work, we explore the application of biological 3D printing to manufacture new cartilage scaffolds to promote cartilage regeneration. The hydrogel made by mixing sodium alginate (SA) and gelatin (GA) has high biocompatibility, but its mechanical properties are poor. The addition of hydroxyapatite (HA) can enhance its mechanical properties. In this paper, the preparation scheme of the SA-GA-HA composite hydrogel cartilage scaffold was explored, the scaffolds prepared with different concentrations were compared, and better formulations were obtained for printing and testing. Mathematical modeling of the printing process of the bracket, simulation analysis of the printing process based on the mathematical model, and adjustment of actual printing parameters based on the results of the simulation were performed. The cartilage scaffold, which was printed using Bioplotter 3D printer, exhibited useful mechanical properties suitable for practical needs. In addition, ATDC-5 cells were seeded on the cartilage scaffolds and the cell survival rate was found to be higher after one week. The findings demonstrated that the fabricated chondrocyte scaffolds had better mechanical properties and biocompatibility, providing a new scaffold strategy for cartilage tissue regeneration.

2.
Environ Toxicol Pharmacol ; 100: 104165, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245612

RESUMO

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two persistent organic pollutants harmful to human health. They induce negative effects on male reproduction by influencing male hormones, spermatogenesis, and sperm quality. However, their effects and mechanisms on human sperm capacitation and fertilization remain unclear. Here, human sperm were incubated with different concentrations of PFOS or PFOA with progesterone during capacitation. Both PFOS and PFOA inhibited human sperm hyperactivation, sperm acrosome reaction, and protein tyrosine phosphorylation levels. PFOS and PFOA decreased intracellular Ca2+ concentration in the presence of progesterone, and subsequently decreased cAMP level, and PKA activity. PFOS and PFOA increased reactive oxygen species production and sperm DNA fragmentation during the only 3 h capacitation incubation. Conclusively, PFOA and PFOS may inhibit human sperm capacitation via the Ca2+-mediated cAMP/PKA signaling pathway in the presence of progesterone, and induce sperm DNA damage through increased oxidative stress, which is not conducive to fertilization.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Masculino , Progesterona/farmacologia , Progesterona/metabolismo , Sêmen , Espermatozoides , Fluorocarbonos/toxicidade , Caprilatos/toxicidade , Transdução de Sinais , Dano ao DNA , Ácidos Alcanossulfônicos/toxicidade
3.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770115

RESUMO

An ideal artificial bone implant should have similar mechanical properties and biocompatibility to natural bone, as well as an internal structure that facilitates stomatal penetration. In this work, 3D printing was used to fabricate and investigate artificial bone composites based on HA-ZrO2-PVA. The composites were proportionally configured using zirconia (ZrO2), hydroxyapatite (HA) and polyvinyl alcohol (PVA), where the ZrO2 played a toughening role and PVA solution served as a binder. In order to obtain the optimal 3D printing process parameters for the composites, a theoretical model of the extrusion process of the composites was first established, followed by the optimization of various parameters including the spray head internal diameter, extrusion pressure, extrusion speed, and extrusion line width. The results showed that, at the optimum parameters of a spray head diameter of 0.2 mm, extrusion pressure values ranging from 1-3 bar, a line spacing of 0.8-1.5 mm, and a spray head displacement range of 8-10 mm/s, a better structure of biological bone scaffolds could be obtained. The mechanical tests performed on the scaffolds showed that the elastic modulus of the artificial bone scaffolds reached about 174 MPa, which fulfilled the biomechanical requirements of human bone. According to scanning electron microscope observation of the scaffold sample, the porosity of the scaffold sample was close to 65%, which can well promote the growth of chondrocytes and angiogenesis. In addition, c5.18 chondrocytes were used to verify the biocompatibility of the composite materials, and the cell proliferation was increased by 100% when compared with that of the control group. The results showed that the composite has good biocompatibility.

4.
Mol Reprod Dev ; 90(3): 129-140, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682071

RESUMO

Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper ) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+ , K+ , Cl- , and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+ ]i , [Cl- ]i , and pHi , but a decrease in [Ca2+ ]i . Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+ ]i , [Cl- ]i , and pHi , and the decrease in [Ca2+ ]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.


Assuntos
Reação Acrossômica , Capacitação Espermática , Humanos , Masculino , Capacitação Espermática/fisiologia , Reação Acrossômica/fisiologia , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Canais de Potássio/metabolismo , Homeostase
5.
J Xray Sci Technol ; 30(1): 1-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34719471

RESUMO

High-energy, high-dose, microfocus X-ray computed tomography (HHM CT) is one of the most effective methods for high-resolution X-ray radiography inspection of high-density samples with fine structures. Minimizing the effective focal spot size of the X-ray source can significantly improve the spatial resolution and the quality of the sample images, which is critical and important for the performance of HHM CT. The objective of this study is to present a 9 MeV HHM CT prototype based on a high-average-current photo-injector in which X-rays with about 70µm focal spot size are produced via using tightly focused electron beams with 65/66µm beam size to hit an optimized tungsten target. In digital radiography (DR) experiment using this HHM CT, clear imaging of a standard 0.1 mm lead DR resolution phantom reveals a resolution of 6 lp/mm (line pairs per mm), while a 5 lp/mm resolution is obtained in CT mode using another resolution phantom made of 10 mm ferrum. Moreover, comparing with the common CT systems, a better turbine blade prototype image was obtained with this HHM CT system, which also indicates the promising application potentials of HHM CT in non-destructive inspection or testing for high-density fine-structure samples.


Assuntos
Intensificação de Imagem Radiográfica , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Raios X
6.
Radiother Oncol ; 166: 44-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774651

RESUMO

PURPOSE: This study aimed to evaluate whether high-energy X-rays (HEXs) of the PARTER (platform for advanced radiotherapy research) platform built on CTFEL (Chengdu THz Free Electron Laser facility) can produce ultrahigh dose rate (FLASH) X-rays and trigger the FLASH effect. MATERIALS AND METHODS: EBT3 radiochromic film and fast current transformer (FCT) devices were used to measure absolute dose and pulsed beam current of HEXs. Subcutaneous tumor-bearing mice and healthy mice were treated with sham, FLASH, and conventional dose rate radiotherapy (CONV), respectively to observe the tumor control efficiency and normal tissue damage. RESULTS: The maximum dose rate of HEXs of PARTER was up to over 1000 Gy/s. Tumor-bearing mice experiment showed a good result on tumor control (p < 0.0001) and significant difference in survival curves (p < 0.005) among the three groups. In the thorax-irradiated healthy mice experiment, there was a significant difference (p = 0.038) in survival among the three groups, with the risk of death decreased by 81% in the FLASH group compared to that in the CONV group. The survival time of healthy mice irradiated in the abdomen in the FLASH group was undoubtedly higher (62.5% of mice were still alive when we stopped observation) than that in the CONV group (7 days). CONCLUSION: This study confirmed that HEXs of the PARTER system can produce ultrahigh dose rate X-rays and trigger a FLASH effect, which provides a basis for future scientific research and clinical application of HEX in FLASH radiotherapy.


Assuntos
Neoplasias , Animais , Protocolos Clínicos , Humanos , Camundongos , Radiografia , Dosagem Radioterapêutica , Raios X
7.
Materials (Basel) ; 12(5)2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857349

RESUMO

It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous⁻stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.

8.
ACS Biomater Sci Eng ; 3(12): 3254-3260, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445368

RESUMO

The topography at the micro/nanoscale level for biomaterial surfaces has been thought to play vital roles in their interactions with cells. However, discovering the interdisciplinary mechanisms underlying how cells respond to micro-nanostructured topography features still remains a challenge. In this work, ∼37 µm 3D printing used titanium microspheres and their further hierarchical micro-nanostructured spheres through hydrothermal treatment were adopted to construct typical model surface topographies to study the preosteoblastic cell responses (adhesion, proliferation, and differentiation). We here demonstrated that not only the hierarchical micro-nanostructured surface topography but also their distribution density played critical role on cell cytocompatibility. The microstructured topography feature surface with middle-density distributed titanium microspheres showed significantly enhanced cell responses, which might be attributed to the better cellular interaction due to the cell aggregates. However, the hierarchical micro-nanostructured topography surface, regardless of the distribution density of titanium microspheres, improved the cell-surface interactions because of the enhanced initial protein adsorption, thereby reducing the cell aggregates and consequently their responses. This work, therefore, provides new insights into the fundamental understanding of cell-material interactions and will have a profound impact on further designing micro-nanostructured topography surfaces to control cell responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...